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Summary

Early field-development decisions often rely on very small samples of reservoir property measurements, where common spreadsheet
workflows (typically lognormal fits) become fragile and analyst-dependent. This paper presents the Metropolis-Adaptive Distribution
Range-Constrained (M-ADRC) method, a practical Metropolis-Hastings (MH) approach with adaptive constraints for generating
representative synthetic populations from low number of observations. The workflow combines (i) domain-informed parameter bounds,
(ii) adaptive proposal tuning, (iii) automatic switching between Pearson Type IIl and lognormal distribution families, and (iv) adaptive
iteration policy for samples with extreme bias.

Using a Southeast Asia gas field netpay dataset, the representative population generated by M-ADRC is benchmarked against the
traditional lognormal spreadsheet approach across diverse net pay samples. Results show that M-ADRC achieves significantly lower
Wasserstein Distance and smaller Swanson’s mean error, reaching the “excellent”Wasserstein threshold with roughly eight samples, only
half the sample requirement of the spreadsheet approach.

The workflow is lightweight, fully open-source, and requires no specialized hardware. It includes default settings, diagnostic checks,
and sensitivity results, enabling reservoir engineers to apply M-ADRC without specialized tuning expertise. M-ADRC yields more reliable
small-sample quantiles, reducing the risk of biased inputs in FDP scenarios and enhancing decision confidence. Workflow limitations such
as restricted distribution types, resilience to extreme sampling bias, and the lack of geospatial properties will be addressed in future work.
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1. Introduction

Field development plant (FDP) is a strategy outlining
the characteristics of an oil and gas field obtained
through the exploration phase, and recommending the
optimal procedure to extract the hydrocarbon safely,
economically, while complying with all regulations and
operational constraints. A central cornerstone ofany FDP is
reserve estimation, which is carried out through reservoir
characterization [1]. One popular estimation method
during the early stage of development is volumetric [2],
where the reservoir is simplified as a porous box. The
original oil and gas in place (OOGIP) is then calculated by
multiplying the volume of the box (area times thickness)
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with porosity, hydrocarbon saturation, and dividing by
formation volume factor [3]:

AhgS
oorp = AP%
B,
AhpS
oGip = 2195
Bg

Therefore, quantifying the uncertainty in formation
parameters such as porosity, water saturation, and net
pay is pivotal for effective employment of volumetric
methods [4, 5]. However, the complex nature of field
exploration makes direct sampling difficult. To overcome
limited sample data, reservoir engineers and geoscientists
often rely on geostatistical methods, ranging from simple
Kriging to sequential Gaussian simulation [6]. Research
on these reservoir properties has been significant, with
several papers proposing variations of methods and
discussing the importance of these properties [7, 8].

PETROVIETNAM - VOLUME 6/2025 35



SCIENGE, TECHNOLOGY & INNOVATION

Regarding the challenge of modeling the
true distribution of geophysical properties
from a small number of samples, a wide variety
of statistical methods have been proposed
[9]. GhojehBeyglou [10] compared Kriging,
Sequential Gaussian Simulation (SGS), and
Gaussian Random Function Simulation (GRFS)
in determining porosity distribution and
concluded that Kriging excels at giving single-
point prediction, while SGS and GRFS are more
compatible in capturing the variability. For 1D
distribution, Aleardi [11] investigated the best
statistical models for predicting the multi-
dimensional distribution of porosity and litho-
fluid facies based on a histogram.

In addition to the aforementioned
statistical methods, a popular approach that
has demonstrated considerable effectiveness
is the application of Monte Carlo simulation
[7], a repeated sampling method that has
seen extensive use in the oil and gas industry
and significantly refined over time through
advances in computer engineering. However,
Monte Carlo implementations,
such as those in Crystal Ball, require large
datasets to produce reliable results, posing
challenges in data-scarce environments like
offshore fields. Therefore, the Metropolis-
Hastings (MH) algorithm [12] is introduced as a
Markov Chain Monte Carlo (MCMC) technique
used to sample from complex probability
distributions, applicable for low to very low
numbers of samples. This method generates a
sequence of correlated samples by proposing
candidate points and accepting them with a
probability that ensures convergence to the
target distribution. MH has been researched
thoroughly in petroleum engineering and
geoscience, including reservoir modeling [13],
well parameters estimation [14], and, most
notably, history matching [15 - 17].

traditional

Thisstudyintroducesapractical Metropolis-
Hastings-based algorithm called Metropolis-
Adaptive  Distribution = Range-Constrained
(M-ADRC) to sample reservoir parameters by
incorporating statistical data of the population
to create an accurate representative synthetic
population. The algorithm is packaged and
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deployed in a web environment for internal use. A case study using
net pay data from Southeast Asian gas fields further validates
the M-ADRC approach and demonstrates its superiority over the
traditional approach.

2, Methodology

2.1. Distribution

The proposed algorithm currently deals with lognormal and
Pearson Ill distributions.

Lognormal distribution

The lognormal distribution is a continuous probability
distribution in which the logarithm of the variable is normally
distributed. It is characterized by a positive skew (right-tailed). There
are two parameters controlling a lognormal distribution (Figure 1):

- W:The mean of the natural logarithm of the distribution.

- 0: The standard deviation of the natural logarithm of the
distribution.

In petroleum engineering, this distribution type is frequently
applied to model reservoir properties such as net pay, permeability,
reserves, as these parameters often arise from multiplicative
geological processes and exhibit right-skewed distributions [18, 19].

Pearson Il distribution

The Pearson Type lll distribution is a three-parameter probability
distribution that represents a shifted and scaled form of the gamma
distribution [20]. It is defined by:

- Skew (a) - controls the skewness. Negative means left-skewed
and positive means right-skewed. Zero means normal distribution.

Effect of parameters on Lognormal Distribution
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Figure 1. Effect of parameters on lognormal distribution.



PETROVIETNAM

- Location (p) - shifts the curve left or right.
- Scale (B) - stretches or compresses the distribution.

Duetoitsflexibility in representing both positively and negatively
skewed data (Figure 2), it has been widely applied in hydrology,
sedimentology, and petroleum reservoir characterization. However,
its complexity also poses challenges in modeling compared to
simpler distribution types such as lognormal.

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a robust MCMC method
designed to sample complex probability distributions where direct
sampling is infeasible. It constructs a Markov chain that converges
to the target distribution (P(x)), enabling the generation of
representative samples. Assuming a sample set of x, xi,... x_from
a presumably lognormal distribution of shape p and scale g, the
algorithm'’s steps are as follows:

Effect of parameters on Pearson llI
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Figure 2. Effect of parameters on Pearson Ill distribution.
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Figure 3. Graphical representation of Metropolis-Hasting algorithm [21].

Initialization: Start at iteration i = 0, select
an initial value (u, and I with | = log (o)) from
the parameter space, typically based on domain
knowledge or the mean/median value of the
samples.

Proposal: Generate new candidate values
u, and | from values in the previous iteration by
adding a proposal term € randomly selected
from a symmetric, usually normal, distribution:

Hi = Hi-1 T €
li = li—l + €]
€ EN(0,0)

Acceptance probability: The acceptance
probability is calculated as:

p(#iﬁ ll) )

a=min|l,—————
( plui-1,li-1)

Acceptance/rejection: Draw a random
number u from a uniform distribution. If a is
larger than or equal to u then accept p, and |,
into the Markov chain. If not, then reject them

(1) instead.

and add the old values p, and |

Iteration: Repeat steps 2 - 4 for N number of
iterations to generate Markov chains of p and I.
After a burn-in period, typically 10% of N, the

chains converge and samples are collected.

Optimal parameters selection: From the
chains, multiple methods can be employed to
select the best set of parameters. For this study,
simple median selection is sufficient.

Hi = i1 T €
li = li—l + €]

For other types of distributions with a
different number of parameters, the same
concept is applicable. Figure 3 represents the
graphical illustration of Metropolis-Hastings:

generate a posterior distribution from a prior
uniform distribution.

M-ADRC modified algorithm:

From the Metropolis-Hasting fundamentals,
many functionalities are incorporated into
M-ADRC algorithm:

Range restrictions
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One of the key requirements for the algorithm to perform
efficiently is a range limit of parameters (skewness, location, scale,
mean of population), which can be obtained from domain experts’
analysis and analogy data from nearby fields. The range should be
wide to avoid accidentally excluding the true parameter values, also
not so broad that the search space becomes inefficient and defeats
the purpose of parameters range restriction. When the algorithm
proposes an out-of-bound sample, it will be rejected. This improves
the stability and efficiency of the search process.

Adaptive proposal

Acceptance rate is a key attribute in evaluating the reliability
of Metropolis-Hasting process. Too low (< 1%) or too high (> 60%)
rate implies poor sampling procedure. Acceptance rate can be
adjusted through the proposal width of each parameter. To avoid
manually tuning the width, a piecewise function is integrated into
the algorithm. During burn-in period, the function divides this phase
into 10 subsections and monitors the acceptance rate in each. If the
acceptance rate is out of bound (1 - 60%), the function will multiply
the rate by an adjustment factor depending on the magnitude of the
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Figure 4. M-ARDC workflow incorporated into reserve calculation.
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acceptance rate. The adjustment factors are
user-inputs. Future work may explore auto-
adaptive algorithms for proposal width, such
as works proposed by Rosenthal [22].

Distribution switch

If the original Pearson Ill fit fails to
produce a correct final solution (out-of-
bounds), which can happen in extreme cases
of sampling bias, the algorithm will switch to
a lognormal distribution and restart the entire
process. Lognormal distributions are much
more robust than Pearson Il [23] and almost
guarantee to produce a“reasonable” solution.
A “risk factor” to quantify the risks involved in
using these samples for modeling distribution
will be introduced in future work.

Adaptive iterations

In worst-case scenario where both the
Pearson llland lognormal distributions fail, the
algorithm pulls a last-ditch effort by restarting
the entire process from the beginning, with
double the number of iterations. Our analysis
shows that the main reason for failure is due
to zero acceptance rate. This, however, can be
remedied by increasing number of iterations
so that the algorithm has time to stabilize
during burn-in. This is, nevertheless, a quick
fix that does not address the underlying
sampling bias problem. This issue will be
revisited in our future work.

Workflow

The M-ADRC workflow is visualized in
Figure 4. Detailed procedures are as follows:

First, the algorithm will attempt to fit a
Pearson Il distribution on the sample and
collect skew, location, scale values as initial
guess.

The modified Metropolis algorithm is
then executed to obtain distribution of these
parameters, ensuring that all parameters must
be within bounds. The best-guess value for
each parameter is chosen as the median.

If the best-guess values do not meet
requirements, the algorithm will switch to
lognormal distribution and rerun the process.
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If lognormal distribution also fails, the
algorithm will restart from the beginning with
double number of iterations.

The reserve estimation is incorporated into
the M-ADRCworkflow. Foreach property suchas
net pay, porosity, saturation, the algorithm will
generate a synthetic population accordingly.
Once all results have been acquired, it is then
the decision of the petroleum engineers on
how to proceed with reserve calculation:
take the P10/P50/P90 or Swanson’s mean of
each property and multiply them in classical
volumetric formula, or perform Monte Carlo on
the joint synthetic population to get a synthetic
distribution of the reserves.

2.2. Lognormal spreadsheet-based approach
(LSA)

Many petroleum operating companies
assume lognormal distribution for majority
of reservoir properties like net pay, porosity,
reserve. In order to generate distribution, they
fit a lognormal curve to the samples, get p and
o, generate the Percentage Point Function
(PPF) and use it for Monte Carlo simulation.
This process, while simple and reliable in many
cases, can be highly misleading under some
circumstances. The number of samples must
be sufficient to generate a representative
distribution. Commercial software may require
a minimum of twelve (12) samples to work. In
many field development projects, the number
of core samples can be as low as four (4), which
significantly decreases the reliability of the
synthetic distribution. In addition, sometimes
the sample can be of poor quality: too far
apart or too clustered, left-skewed. A practice
employed by our engineers is to duplicate
the samples so that the number of samples
exceeds the threshold of commercial software.
This is, however, an unproven practice with no
scientific justification.

3. Case study setup

The case study focuses on net pay data
from nearly 2,000 wells in gas fields across
Southeast Asia, characterized by a lognormal
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Figure 5. Lognormal fitted curve.

distribution. A smaller subset of 500 wells with similar geological and
operational attributes to our operating fields has been selected and
will be used for this case study. The net pay data for this population
can be characterized by either lognormal, Johnson'’s SU, or Pearson
Il distribution, as shown in Figure 6. Currently the algorithm focuses
on Pearson Ill and lognormal distributions. Future work may extend
further to include more comprehensive distribution types.

All simulations are implemented in Python and executed on
standard office machine, with no specialized software or hardware.

For the parameters range as input for M-ADRC (Table 1), this
case study uses very wide range, much wider than the actual values
as boundaries:

The simulation parameters are listed in Table 2.

The flowchart for validation process is presented in Figure 7.
Detailed explanation is as follows:

Sample selection: A number of random samples were drawn
from the 500-well dataset.

Simulation: The M-ADRC algorithm and traditional lognormal-
based spreadsheet approach (LSA) were executed to generate the
percentage point function (PPF).

Validation: The PPF generated from the proposed algorithm and
spreadsheet method were validated against actual population using
two metrics:

Wasserstein distance (WD): Also known as Earth Mover's
distance, measures distance between two probability distributions.
It is widely used in uncertainty quantification (Scheidt and Caers,
2009). The common form is the 1-Wasserstein distance:

Wy(P,Q) = f |F(q) - F5(@)|dg
0
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Table 1. Distribution parameters used by M-ADRC

Distribution parameters
a (Pearson Ill)
u (Pearson [l
[ (Pearson lll)
Population mean
1 (Lognormal)
o (Lognormal)

Where q is the quantile and F' (q) is the
quantile function. Two identical distributions
will have a distance that equals zero. The
unit of Wasserstein distance is the same as
the unit of the distribution. For this study,
Wasserstein distance between the PPF of
the synthetic and actual population will be
compared. A “decent” WD score depends on
the magnitude of the distributions. Figure 8
shows that for this dataset, a WD score of 25
or less can be considered excellent, as the
synthetic population accurately represents
actual population.

Swanson’s mean (SM): Is an empirical
approximation of mean for lognormal or
moderately right-skewed distribution based
on P10, P50, and P90. The most common
formula in oil and gas [24] is:

Swanson's Mean = 03P, +04P+ 03P,

For this study, the relative difference
between SM of synthetic and actual
population will be recorded. It is calculated as:

% Relative _ |Synthetic-Actual

Difference ~ Actual x100

Iteration: The process was repeated
1,000 times to assess robustness, with results
recorded for statistical analysis.

Repeat: Repeat the entire process but
with a higher number of samples. This study
will demonstrate an analysis for number of
samples from 4 to 12.

4. Results and discussion

4.1. Wasserstein distance

Figure 9 shows the median Wasserstein
distance between actual PPF of the true
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Range Actual population value
0-40 12
0-2,000 138
0-2,000 89
20- 300 (95™ percentile) 138
3-64 49
0-2 0.7

Table 2. Simulation parameters

Simulation parameters Value
Proposal a 0.1
Proposal w (Pearson lll) 0.5
Proposal 5 0.5
Proposal ut (Lognormal) 0.4
Proposal o 0.4
n_iteration 10,000
Burn-in 1,000

Comparing Fitted Distribations to Original tres_papulation

= Crigrul tres_popiiaton
Y, x — jevon Sl
LI R . *y == Pearum il Fe
: |- + v Lot

Dhernity
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Figure 6. Compare distribution types to data.
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Figure 7. Workflow for the case study.
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Figure 8. Example of Wasserstein distance between synthetic and actual population.

population and synthetic PPF generated from M-ADRC and LSA
with increasing number of samples. Each data point represents the
median WD value for 1,000 simulation cases with different samples.
M-ADRC demonstrates superiority over conventional LSA method. If
we consider a Wasserstein distance of 25 as the threshold for excellent
representation, then M-ADRC reaches this threshold at around 8
samples, while LSA needs 16 - 18 samples.

Figure 10 further demonstrates the percentage of casesin each run
where M-ADRC outputs lower Wasserstein distance value than LSA. To
prove its effectiveness, M-ADRC needs to demonstrate improvement
in comparison to LSA for more than 50% of cases. The results show that
M-ADRC exceeds this threshold by a wide margin, starting at nearly
70% and increasing further as the number of samples grows.

4.2, Swanson’s mean

Similar to  Wasserstein  distance,
M-ADRC also shows significantly improved
performance in terms of Swanson’s mean
difference compared to LSA. Figure 11
plots the median relative difference of
Swanson’s mean between the actual
population and synthetic distribution
generated from M-ADRC and LSA. Each
data point is the median relative difference
for 1,000 simulation cases. Although
M-ADRC continues to outperform LSA,
the performance gap narrows as sample
size increases. This is expected because
estimating a
Swanson’s mean is far less demanding than
modeling the full distribution using the

distribution’s mean via

Wasserstein distance.

Figure 12 plots the percentage of
cases where M-ADRC outperforms LSA in
Swanson’s mean relative difference metric
for different number of samples. The gap
between two methods remains relatively
constant rather than widening as seen in
Figure 10. Nevertheless, M-ADRC maintains
at least 60% ratio across all runs.

Results of the case study clearly
demonstrate  the  vast
of M-ADRC compared to conventional
lognormal spreadsheet approach (LSA) in
representing the true population based on a
small number of samples. By integrating an
advanced MCMC algorithm with adaptive
tuning, range restrictions, and distribution
switch, M-ADRC is established as a state-
of-the-art algorithm, capable of providing
reliable synthetic distribution.

improvement

4.3. Limitations

The approach requires domain
knowledge to limit the range of distribution
parameters, especially the mean value.
At current stage of development, the
algorithm still lacks capability to effectively
handle extreme

sample selections significantly reduce the

sampling bias. Poor
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Figure 10. Percentage of cases where M-ADRC yields improved results to LSA - Wasserstein distance.
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Figure 11. Median % relative difference of Swanson's mean between synthetic and actual
population: M-ADRCvs LSA.
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22

performance of the algorithm. Figure 13
illustrates that when input samples differ
substantially from the true population
distribution, the
population will poorly represent the
actual population. Furthermore, the
workflow does not take into account
geospatial properties.

resulting synthetic

- Web applications

The algorithm is packaged into a
web-based solution consisting of two
applications (Figure 14): Metropolis
sampling to create a synthetic
population, and best fit to fit distribution
parameters to the synthetic or actual
population.

The web application offers several
advantages:

+ Accuracy: Robust  sampling
with only six samples, reducing data
requirements.

+ Scalability: Applicable to other
parameters (e.g.,  porosity,
saturation) with similar distributions.

water

+ Usability:  Intuitive interface
accessible to non-expert users, with

automated parameter estimation.
- Metropolis sampling

The web application is designed
to streamline the application of the
Metropolis algorithm for
engineers and geophysicists,
those without extensive computational
expertise. The workflow includes:

reservoir
even

Data Input: Users upload a .csv file
containing formation parameter data
(e.g., net pay, porosity, water saturation).
The file must include a header row and
numeric columns, with missing values
handled via imputation or exclusion.

Parameter Selection: Users select a
numeric column (e.g., “Net_Pay”) and a
distribution function (e.g., lognormal,
Gaussian) from a dropdown menu.
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Figure 12. Percentage of cases where M-ADRC yields improved results to LSA - Swanson’s mean.
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Figure 13. Effect of poor sampling on synthetic population generation.

m Metropolis Sampling

(=}

Best Fit Application

Figure 14. The solution consists of two applications: Metropolis Sampling and Best Fit.

The application estimates distribution
parameters (e.g., Y, o for log-normal) using
maximum likelihood estimation.

Sampling Process: A “Run Sampling”
button triggers the metropolis algorithm.
The application runs N iterations with a
burn-in of 10% of N, generating a synthetic
population of 90%N samples.

Output and Validation: Results are
displayed as a histogram of the synthetic
population alongside the input data
distribution. Users can download the
synthetic data as a .csv file for further
analysis (e.g., in reservoir simulation
software).

The application is built using Streamlit
frameworkwithaPythonbackend, ensuring
scalability and ease of deployment (Figure
15).

- Best fit application

The best fit application is designed to
take a population as input, fit a distribution
type (normal, lognormal, triangular) to the
population, generate fitted parameters,
and compare the fitted distribution to the
actual distribution. Figure 16 demonstrates
the workflow of the application:

Data Input: Users upload a .csv file
containing the population.
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Figure 16. Best Fit Application workflow.

Parameter Selection: Users select a numeric column
(e.g., “Net_Pay”) and a distribution function (e.g., log-
normal, normal, triangular) from a dropdown menu. The
application displays descriptive statistical information and
estimates distribution parameters.

Fit Process: A “Find best fit” button triggers the curve
fitting process.The application finds the best fit parameters
for the input population and the chosen distribution type.

Output and Validation: Results are displayed as a
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histogram of the input population alongside the fitted
distribution. Cumulative density function (CDF) plot of the
population and the fitted distribution is also presented.
Users can download the output as a .csv file for further
analysis.

5. Conclusions and recommendations

This study presents M-ADRC, an adaptive
Metropolis-Hastings workflow with range constraints,
adaptive tuning, and automatic distribution selection
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designed to deliver representative synthetic population
from datasets with few samples. The workflow is tailored
for lognormal and Pearson Il distribution, which are
commonly used to model reservoir properties such
as porosity, net pay, saturation. Range restriction of
the population relies on opinion of domain experts or
analogy from similar areas. There are multiple failsafe
mechanism designed to prevent infeasible results
within the workflow.

Applied to net pay dataset from Southeast Asian gas
fields, the M-ADRC consistently outperforms traditional
lognormal spreadsheet-based approach in term of
Wasserstein distance and Swanson’s mean for all sample
size. The workflow is lightweight, reproducible, and
runs on standard desktop hardware. Key limitations
include its reliance on reasonable parameter bounds,
resilience to extreme bias in sampling, and restriction
to two distribution families, in addition to negligence
of geospatial properties.
incorporate broader distribution families (e.g., Johnson
SU), censored/error models, hierarchical pooling across

Future extensions could

fields, spatial correlation, and advanced samplers.
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