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1. Introduction

Field development plant (FDP) is a strategy outlining 
the characteristics of an oil and gas field obtained 
through the exploration phase, and recommending the 
optimal procedure to extract the hydrocarbon safely, 
economically, while complying with all regulations and 
operational constraints. A central cornerstone of any FDP is 
reserve estimation, which is carried out through reservoir 
characterization [1]. One popular estimation method 
during the early stage of development is volumetric [2], 
where the reservoir is simplified as a porous box. The 
original oil and gas in place (OOGIP) is then calculated by 
multiplying the volume of the box (area times thickness) 
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with porosity, hydrocarbon saturation, and dividing by 
formation volume factor [3]:

Therefore, quantifying the uncertainty in formation 
parameters such as porosity, water saturation, and net 
pay is pivotal for effective employment of volumetric 
methods [4, 5]. However, the complex nature of field 
exploration makes direct sampling difficult. To overcome 
limited sample data, reservoir engineers and geoscientists 
often rely on geostatistical methods, ranging from simple 
Kriging to sequential Gaussian simulation [6]. Research 
on these reservoir properties has been significant, with 
several papers proposing variations of methods and 
discussing the importance of these properties [7, 8].  
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Regarding the challenge of modeling the 
true distribution of geophysical properties 
from a small number of samples, a wide variety 
of statistical methods have been proposed 
[9]. GhojehBeyglou [10] compared Kriging, 
Sequential Gaussian Simulation (SGS), and 
Gaussian Random Function Simulation (GRFS) 
in determining porosity distribution and 
concluded that Kriging excels at giving single-
point prediction, while SGS and GRFS are more 
compatible in capturing the variability. For 1D 
distribution, Aleardi [11] investigated the best 
statistical models for predicting the multi-
dimensional distribution of porosity and litho-
fluid facies based on a histogram. 

In addition to the aforementioned 
statistical methods, a popular approach that 
has demonstrated considerable effectiveness 
is the application of Monte Carlo simulation 
[7], a repeated sampling method that has 
seen extensive use in the oil and gas industry 
and significantly refined over time through 
advances in computer engineering. However, 
traditional Monte Carlo implementations, 
such as those in Crystal Ball, require large 
datasets to produce reliable results, posing 
challenges in data-scarce environments like 
offshore fields. Therefore, the Metropolis-
Hastings (MH) algorithm [12] is introduced as a 
Markov Chain Monte Carlo (MCMC) technique 
used to sample from complex probability 
distributions, applicable for low to very low 
numbers of samples. This method generates a 
sequence of correlated samples by proposing 
candidate points and accepting them with a 
probability that ensures convergence to the 
target distribution. MH has been researched 
thoroughly in petroleum engineering and 
geoscience, including reservoir modeling [13], 
well parameters estimation [14], and, most 
notably, history matching [15 - 17].

This study introduces a practical Metropolis-
Hastings-based algorithm called Metropolis-
Adaptive Distribution Range-Constrained 
(M-ADRC) to sample reservoir parameters by 
incorporating statistical data of the population 
to create an accurate representative synthetic 
population. The algorithm is packaged and 

deployed in a web environment for internal use. A case study using 
net pay data from Southeast Asian gas fields further validates 
the M-ADRC approach and demonstrates its superiority over the 
traditional approach.

2. Methodology

2.1. Distribution

The proposed algorithm currently deals with lognormal and 
Pearson III distributions.

Lognormal distribution

The lognormal distribution is a continuous probability 
distribution in which the logarithm of the variable is normally 
distributed. It is characterized by a positive skew (right-tailed). There 
are two parameters controlling a lognormal distribution (Figure 1):

-	 μ: The mean of the natural logarithm of the distribution.

-	 σ: The standard deviation of the natural logarithm of the 
distribution.

In petroleum engineering, this distribution type is frequently 
applied to model reservoir properties such as net pay, permeability, 
reserves, as these parameters often arise from multiplicative 
geological processes and exhibit right-skewed distributions [18, 19].

Pearson III distribution

The Pearson Type III distribution is a three-parameter probability 
distribution that represents a shifted and scaled form of the gamma 
distribution [20]. It is defined by:

-	 Skew (α) - controls the skewness. Negative means left-skewed 
and positive means right-skewed. Zero means normal distribution.

Figure 1. Effect of parameters on lognormal distribution.

Effect of parameters on Lognormal Distribution

Va
lue

Lognormal (0.5, 0.5) 
Lognormal (1, 1) 
Lognormal (2, 2)

0.0            2.5            5.0           7.5            10           12.5        15.0          17.5           20
Density

1.4 
 

1.2 
 

1.0 
 

0.8 
 

0.6 
 

0.4 
 

0.2 
 
0



37PETROVIETNAM - VOLUME 6/2025

PETROVIETNAM

-	 Location (μ) - shifts the curve left or right.

-	 Scale (β) - stretches or compresses the distribution.

Due to its flexibility in representing both positively and negatively 
skewed data (Figure 2), it has been widely applied in hydrology, 
sedimentology, and petroleum reservoir characterization. However, 
its complexity also poses challenges in modeling compared to 
simpler distribution types such as lognormal.

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a robust MCMC method 
designed to sample complex probability distributions where direct 
sampling is infeasible. It constructs a Markov chain that converges 
to the target distribution (P(x)), enabling the generation of 
representative samples. Assuming a sample set of x0, x1,… xn from 
a presumably lognormal distribution of shape μ and scale σ, the 
algorithm’s steps are as follows:

Initialization: Start at iteration i = 0, select 
an initial value (μ0 and l0 with l = log (σ)) from 
the parameter space, typically based on domain 
knowledge or the mean/median value of the 
samples.

Proposal: Generate new candidate values 
μi and li from values in the previous iteration by 
adding a proposal term Є randomly selected 
from a symmetric, usually normal, distribution:

Acceptance probability: The acceptance 
probability is calculated as:

Acceptance/rejection: Draw a random 
number u from a uniform distribution. If α is 
larger than or equal to u then accept μi and li 
into the Markov chain. If not, then reject them 
and add the old values μ(i-1) and l(i-1) instead.

Iteration: Repeat steps 2 - 4 for N number of 
iterations to generate Markov chains of μ and l. 
After a burn-in period, typically 10% of N, the 
chains converge and samples are collected.

Optimal parameters selection: From the 
chains, multiple methods can be employed to 
select the best set of parameters. For this study, 
simple median selection is sufficient.

For other types of distributions with a 
different number of parameters, the same 
concept is applicable. Figure 3 represents the 
graphical illustration of Metropolis-Hastings: 
generate a posterior distribution from a prior 
uniform distribution.

M-ADRC modified algorithm:

From the Metropolis-Hasting fundamentals, 
many functionalities are incorporated into 
M-ADRC algorithm:

Range restrictionsFigure 3. Graphical representation of Metropolis-Hasting algorithm [21].

Figure 2. Effect of parameters on Pearson III distribution.
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One of the key requirements for the algorithm to perform 
efficiently is a range limit of parameters (skewness, location, scale, 
mean of population), which can be obtained from domain experts’ 
analysis and analogy data from nearby fields. The range should be 
wide to avoid accidentally excluding the true parameter values, also 
not so broad that the search space becomes inefficient and defeats 
the purpose of parameters range restriction. When the algorithm 
proposes an out-of-bound sample, it will be rejected. This improves 
the stability and efficiency of the search process.

Adaptive proposal

Acceptance rate is a key attribute in evaluating the reliability 
of Metropolis-Hasting process. Too low (< 1%) or too high (> 60%) 
rate implies poor sampling procedure. Acceptance rate can be 
adjusted through the proposal width of each parameter. To avoid 
manually tuning the width, a piecewise function is integrated into 
the algorithm. During burn-in period, the function divides this phase 
into 10 subsections and monitors the acceptance rate in each. If the 
acceptance rate is out of bound (1 - 60%), the function will multiply 
the rate by an adjustment factor depending on the magnitude of the 

acceptance rate. The adjustment factors are 
user-inputs. Future work may explore auto-
adaptive algorithms for proposal width, such 
as works proposed by Rosenthal [22].

Distribution switch

If the original Pearson III fit fails to 
produce a correct final solution (out-of-
bounds), which can happen in extreme cases 
of sampling bias, the algorithm will switch to 
a lognormal distribution and restart the entire 
process. Lognormal distributions are much 
more robust than Pearson III [23] and almost 
guarantee to produce a “reasonable” solution. 
A “risk factor” to quantify the risks involved in 
using these samples for modeling distribution 
will be introduced in future work.

Adaptive iterations

In worst-case scenario where both the 
Pearson III and lognormal distributions fail, the 
algorithm pulls a last-ditch effort by restarting 
the entire process from the beginning, with 
double the number of iterations. Our analysis 
shows that the main reason for failure is due 
to zero acceptance rate. This, however, can be 
remedied by increasing number of iterations 
so that the algorithm has time to stabilize 
during burn-in. This is, nevertheless, a quick 
fix that does not address the underlying 
sampling bias problem. This issue will be 
revisited in our future work.

Workflow

The M-ADRC workflow is visualized in 
Figure 4. Detailed procedures are as follows:

First, the algorithm will attempt to fit a 
Pearson III distribution on the sample and 
collect skew, location, scale values as initial 
guess. 

The modified Metropolis algorithm is 
then executed to obtain distribution of these 
parameters, ensuring that all parameters must 
be within bounds. The best-guess value for 
each parameter is chosen as the median.

If the best-guess values do not meet 
requirements, the algorithm will switch to 
lognormal distribution and rerun the process.Figure 4. M-ARDC workflow incorporated into reserve calculation.
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If lognormal distribution also fails, the 
algorithm will restart from the beginning with 
double number of iterations.

The reserve estimation is incorporated into 
the M-ADRC workflow. For each property such as 
net pay, porosity, saturation, the algorithm will 
generate a synthetic population accordingly. 
Once all results have been acquired, it is then 
the decision of the petroleum engineers on 
how to proceed with reserve calculation: 
take the P10/P50/P90 or Swanson’s mean of 
each property and multiply them in classical 
volumetric formula, or perform Monte Carlo on 
the joint synthetic population to get a synthetic 
distribution of the reserves.

2.2. Lognormal spreadsheet-based approach 
(LSA)

Many petroleum operating companies 
assume lognormal distribution for majority 
of reservoir properties like net pay, porosity, 
reserve. In order to generate distribution, they 
fit a lognormal curve to the samples, get μ and 
σ, generate the Percentage Point Function 
(PPF) and use it for Monte Carlo simulation. 
This process, while simple and reliable in many 
cases, can be highly misleading under some 
circumstances. The number of samples must 
be sufficient to generate a representative 
distribution. Commercial software may require 
a minimum of twelve (12) samples to work. In 
many field development projects, the number 
of core samples can be as low as four (4), which 
significantly decreases the reliability of the 
synthetic distribution. In addition, sometimes 
the sample can be of poor quality: too far 
apart or too clustered, left-skewed. A practice 
employed by our engineers is to duplicate 
the samples so that the number of samples 
exceeds the threshold of commercial software. 
This is, however, an unproven practice with no 
scientific justification.

3. Case study setup

The case study focuses on net pay data 
from nearly 2,000 wells in gas fields across 
Southeast Asia, characterized by a lognormal 

distribution. A smaller subset of 500 wells with similar geological and 
operational attributes to our operating fields has been selected and 
will be used for this case study. The net pay data for this population 
can be characterized by either lognormal, Johnson’s SU, or Pearson 
III distribution, as shown in Figure 6. Currently the algorithm focuses 
on Pearson III and lognormal distributions. Future work may extend 
further to include more comprehensive distribution types.

All simulations are implemented in Python and executed on 
standard office machine, with no specialized software or hardware.

For the parameters range as input for M-ADRC (Table 1), this 
case study uses very wide range, much wider than the actual values 
as boundaries:

The simulation parameters are listed in Table 2. 

The flowchart for validation process is presented in Figure 7. 
Detailed explanation is as follows:

Sample selection: A number of random samples were drawn 
from the 500-well dataset. 

Simulation: The M-ADRC algorithm and traditional lognormal-
based spreadsheet approach (LSA) were executed to generate the 
percentage point function (PPF).

Validation: The PPF generated from the proposed algorithm and 
spreadsheet method were validated against actual population using 
two metrics:

Wasserstein distance (WD): Also known as Earth Mover’s 
distance, measures distance between two probability distributions. 
It is widely used in uncertainty quantification (Scheidt and Caers, 
2009). The common form is the 1-Wasserstein distance:

Figure 5. Lognormal fitted curve.
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Where q is the quantile and F-1 (q) is the 
quantile function. Two identical distributions 
will have a distance that equals zero. The 
unit of Wasserstein distance is the same as 
the unit of the distribution. For this study, 
Wasserstein distance between the PPF of 
the synthetic and actual population will be 
compared. A “decent” WD score depends on 
the magnitude of the distributions. Figure 8 
shows that for this dataset, a WD score of 25 
or less can be considered excellent, as the 
synthetic population accurately represents 
actual population.

Swanson’s mean (SM): Is an empirical 
approximation of mean for lognormal or 
moderately right-skewed distribution based 
on P10, P50, and P90. The most common 
formula in oil and gas [24] is:

Swanson's Mean = 0.3P10 + 0.4P50 + 0.3P90

For this study, the relative difference 
between SM of synthetic and actual 
population will be recorded. It is calculated as:

Iteration: The process was repeated 
1,000 times to assess robustness, with results 
recorded for statistical analysis.

Repeat: Repeat the entire process but 
with a higher number of samples. This study 
will demonstrate an analysis for number of 
samples from 4 to 12. 

4. Results and discussion

4.1. Wasserstein distance

Figure 9 shows the median Wasserstein 
distance between actual PPF of the true 

Figure 6. Compare distribution types to data.

Distribution parameters Range Actual population value 
� (Pearson III) 0 - 40 1.2 
� (Pearson III) 0 - 2,000 138 
� (Pearson III) 0 - 2,000 89 
Population mean 20 - 300 (95th percentile) 138 
� (Lognormal) 3 - 6.4 4.9 
� (Lognormal) 0-2 0.7 

Table 1. Distribution parameters used by M-ADRC

Simulation parameters Value 
Proposal � 0.1 

Proposal � (Pearson III) 0.5 
Proposal � 0.5 

Proposal � (Lognormal) 0.4 
Proposal � 0.4 
n_iteration 10,000 

Burn-in 1,000 

Table 2. Simulation parameters

Figure 7. Workflow for the case study.
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population and synthetic PPF generated from M-ADRC and LSA 
with increasing number of samples. Each data point represents the 
median WD value for 1,000 simulation cases with different samples. 
M-ADRC demonstrates superiority over conventional LSA method. If 
we consider a Wasserstein distance of 25 as the threshold for excellent 
representation, then M-ADRC reaches this threshold at around 8 
samples, while LSA needs 16 - 18 samples.

Figure 10 further demonstrates the percentage of cases in each run 
where M-ADRC outputs lower Wasserstein distance value than LSA. To 
prove its effectiveness, M-ADRC needs to demonstrate improvement 
in comparison to LSA for more than 50% of cases. The results show that 
M-ADRC exceeds this threshold by a wide margin, starting at nearly 
70% and increasing further as the number of samples grows.

Figure 8. Example of Wasserstein distance between synthetic and actual population. 

4.2. Swanson’s mean

Similar to Wasserstein distance, 
M-ADRC also shows significantly improved 
performance in terms of Swanson’s mean 
difference compared to LSA. Figure 11 
plots the median relative difference of 
Swanson’s mean between the actual 
population and synthetic distribution 
generated from M-ADRC and LSA. Each 
data point is the median relative difference 
for 1,000 simulation cases. Although 
M‑ADRC continues to outperform LSA, 
the performance gap narrows as sample 
size increases. This is expected because 
estimating a distribution’s mean via 
Swanson’s mean is far less demanding than 
modeling the full distribution using the 
Wasserstein distance.

Figure 12 plots the percentage of 
cases where M-ADRC outperforms LSA in 
Swanson’s mean relative difference metric 
for different number of samples. The gap 
between two methods remains relatively 
constant rather than widening as seen in 
Figure 10. Nevertheless, M-ADRC maintains 
at least 60% ratio across all runs.

Results of the case study clearly 
demonstrate the vast improvement 
of M-ADRC compared to conventional 
lognormal spreadsheet approach (LSA) in 
representing the true population based on a 
small number of samples. By integrating an 
advanced MCMC algorithm with adaptive 
tuning, range restrictions, and distribution 
switch, M-ADRC is established as a state-
of-the-art algorithm, capable of providing 
reliable synthetic distribution. 

4.3. Limitations

The approach requires domain 
knowledge to limit the range of distribution 
parameters, especially the mean value. 
At current stage of development, the 
algorithm still lacks capability to effectively 
handle extreme sampling bias. Poor 
sample selections significantly reduce the 
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Figure 9. Median Wasserstein distance between synthetic and actual population: M-ADRC vs LSA.

Figure 10. Percentage of cases where M-ADRC yields improved results to LSA - Wasserstein distance.

Figure 11. Median % relative difference of Swanson's mean between synthetic and actual  
population: M-ADRC vs LSA.
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performance of the algorithm. Figure 13 
illustrates that when input samples differ 
substantially from the true population 
distribution, the resulting synthetic 
population will poorly represent the 
actual population. Furthermore, the 
workflow does not take into account 
geospatial properties.

-	 Web applications

The algorithm is packaged into a 
web-based solution consisting of two 
applications (Figure 14): Metropolis 
sampling to create a synthetic 
population, and best fit to fit distribution 
parameters to the synthetic or actual 
population.

The web application offers several 
advantages:

	+ Accuracy: Robust sampling 
with only six samples, reducing data 
requirements.

	+ Scalability: Applicable to other 
parameters (e.g., porosity, water 
saturation) with similar distributions.

	+ Usability: Intuitive interface 
accessible to non-expert users, with 
automated parameter estimation.

-	 Metropolis sampling

The web application is designed 
to streamline the application of the 
Metropolis algorithm for reservoir 
engineers and geophysicists, even 
those without extensive computational 
expertise. The workflow includes:

Data Input: Users upload a .csv file 
containing formation parameter data 
(e.g., net pay, porosity, water saturation). 
The file must include a header row and 
numeric columns, with missing values 
handled via imputation or exclusion.

Parameter Selection: Users select a 
numeric column (e.g., “Net_Pay”) and a 
distribution function (e.g., lognormal, 
Gaussian) from a dropdown menu. 
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Figure 12. Percentage of cases where M-ADRC yields improved results to LSA - Swanson’s mean.

Figure 13. Effect of poor sampling on synthetic population generation.

Figure 14. The solution consists of two applications: Metropolis Sampling and Best Fit. 
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The application estimates distribution 
parameters (e.g., μ, σ for log-normal) using 
maximum likelihood estimation.

Sampling Process: A “Run Sampling” 
button triggers the metropolis algorithm. 
The application runs N iterations with a 
burn-in of 10% of N, generating a synthetic 
population of 90%N samples.

Output and Validation: Results are 
displayed as a histogram of the synthetic 
population alongside the input data 
distribution. Users can download the 
synthetic data as a .csv file for further 
analysis (e.g., in reservoir simulation 
software).

The application is built using Streamlit 
framework with a Python backend, ensuring 
scalability and ease of deployment (Figure 
15).

-	 Best fit application

The best fit application is designed to 
take a population as input, fit a distribution 
type (normal, lognormal, triangular) to the 
population, generate fitted parameters, 
and compare the fitted distribution to the 
actual distribution. Figure 16 demonstrates 
the workflow of the application:

Data Input: Users upload a .csv file 
containing the population.

Best Fit ApplicationMetropolis Sampling
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Parameter Selection: Users select a numeric column 
(e.g., “Net_Pay”) and a distribution function (e.g., log-
normal, normal, triangular) from a dropdown menu. The 
application displays descriptive statistical information and 
estimates distribution parameters.

Fit Process: A “Find best fit” button triggers the curve 
fitting process. The application finds the best fit parameters 
for the input population and the chosen distribution type.

Output and Validation: Results are displayed as a 

histogram of the input population alongside the fitted 
distribution. Cumulative density function (CDF) plot of the 
population and the fitted distribution is also presented. 
Users can download the output as a .csv file for further 
analysis.

5. Conclusions and recommendations

This study presents M-ADRC, an adaptive 
Metropolis-Hastings workflow with range constraints, 
adaptive tuning, and automatic distribution selection 

Figure 15. Metropolis Sampling output.

Figure 16. Best Fit Application workflow.
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designed to deliver representative synthetic population 
from datasets with few samples. The workflow is tailored 
for lognormal and Pearson III distribution, which are 
commonly used to model reservoir properties such 
as porosity, net pay, saturation. Range restriction of 
the population relies on opinion of domain experts or 
analogy from similar areas. There are multiple failsafe 
mechanism designed to prevent infeasible results 
within the workflow.

Applied to net pay dataset from Southeast Asian gas 
fields, the M-ADRC consistently outperforms traditional 
lognormal spreadsheet-based approach in term of 
Wasserstein distance and Swanson’s mean for all sample 
size. The workflow is lightweight, reproducible, and 
runs on standard desktop hardware. Key limitations 
include its reliance on reasonable parameter bounds, 
resilience to extreme bias in sampling, and restriction 
to two distribution families, in addition to negligence 
of geospatial properties. Future extensions could 
incorporate broader distribution families (e.g., Johnson 
SU), censored/error models, hierarchical pooling across 
fields, spatial correlation, and advanced samplers.
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